
LLM-Barber: A One-Shot Block-Aware Rebuilder
for Sparsity Mask in Large Language Models

Abstract—Large language models (LLMs) have seen substan-
tial growth, necessitating efficient model pruning techniques. Ex-
isting post-training pruning methods primarily measure weight
importance in converged dense models, often overlooking changes
in weight significance during the pruning process, leading to
performance degradation. To address this issue, we present LLM-
Barber (A One-Shot Block-Aware Rebuilder for Sparsity Mask),
a simple yet effective pruning approach that rebuilds the sparsity
mask of pruned models without any retraining or weight recon-
struction. LLM-Barber incorporates block-aware error optimiza-
tion across Self-Attention and MLP blocks, facilitating global
performance optimization. We are the first to employ the product
of weights and gradients as a pruning metric in the context of
LLM post-training pruning. This enables accurate identification
of weight importance in massive models and significantly reduces
computational complexity compared to methods using second-
order information. Our approach significantly reduces memory
usage and computational demands, making it more efficient for
deployment on accelerators and edge devices. Experiments on
LLaMA3-8B with 50% sparsity show up to a 19x improvement in
performance when incorporating LLM-Barber into the pruning
process, while achieving a state-of-the-art perplexity of 9.45 on
WikiText-2 and an average zero-shot performance of 55.21%
across various tasks in post-training pruning domain.

Index Terms—Large Language Models, Post-training Pruning,
Sparsity Mask Rebuilding, Low-resource Deployment.

I. INTRODUCTION

LLMs have become foundational in artificial intelligence
due to their impressive performance on various tasks. How-
ever, the increasing size and complexity of models, such as
GPT-175B [1] with 175 billion parameters, pose significant
challenges related to extensive computational and storage de-
mands. Consequently, efficient model compression strategies
are crucial for enabling the practical edge deployment.

Network pruning shrinks network sizes by setting specific
weights to zero, effectively removing them from the network.
However, current pruning methods face two major challenges.
First, traditional layer-aware pruning methods focus on in-
dividual layers, neglecting inter-layer dependencies, which
increases error accumulation (blue arrows in Figure 1(a)).
Second, as shown in Figure 1(b), conventional methods typi-
cally build the sparsity mask only once, ignoring the changes
of weight significance in post-pruning stage. This oversight
can lead to improper identification of salient weights and
subsequent performance degradation.

To address these limitations, we propose LLM-Barber, a
novel and straightforward approach to rebuild sparsity mask
of pruned networks without requiring any retraining or weight
reconstruction. Firstly, LLM-Barber integrates pruning across
Self-Attention and MLP blocks. This approach mitigates error
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Fig. 1: The benefits of integrating LLM-Barber into the prun-
ing process: (a) Transition from the layer-aware to block-aware
error accumulation for an optimized solution. (b) Rebuilding
sparsity mask using a novel pruning metric.

accumulation, as evidenced by the lighter orange arrows,
promoting more global optimization. Secondly, LLM-Barber
identifies weights that, although initially non-salient without
a sparsity mask, gain significance in post-pruning. As shown
in Figure 1(b), varying color shades represent the relative im-
portance scores of different weights. LLM-Barber accurately
rebuilds masks for high-score weights (deeply shaded) while
pruning newly identified low-score weights (lightly shaded).
Thirdly, LLM-Barber employs the product of weights and
gradients as pruning metric. While this metric has been applied
in other contexts [2], [3], we are the first to leverage it in the
context of post-training compression for LLMs, reducing com-
putational complexity compared to second-order methods [4].
Finally, LLM-Barber efficiently rebuilds sparsity masks in a
one-shot manner, surpassing fine-tuning methods in efficiency
while maintaining high accuracy. This efficiency makes it more
favorable for accelerating LLMs on hardware platforms. To
sum up, the key contributions are fourfold:

• Block-Aware Global Optimization: We are among the
first to introduce a block-aware reconstruction problem
that integrates sparsity across the Self-Attention and MLP
blocks, achieving global optimization in pruning.

• Rebuilding Sensitive Regions: By identifying and retain-
ing significant weights post-pruning while dynamically
adjusting sparsity masks, we enhance model performance
through optimal sparsity reallocation.

• Innovative Pruning Metric: We are the first to apply
the product of weights and gradients as a pruning metric
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Fig. 2: The workflow of LLM-Barber. (a) illustrates the process of block-aware reconstruction error and gradient calculation
for each linear weight. (b) shows pruning metric computation and sparsity mask rebuilding.

in post-training compression, leveraging first-order Taylor
series for importance evaluation to reduce computational
complexity compared to Hessian-based approaches.

• Efficiency for Hardware Acceleration: LLM-Barber’s
one-shot pruning method is more efficient than fine-
tuning approaches, making it highly suitable for accel-
erating LLMs on hardware platforms. It achieves state-
of-the-art performance in perplexity and zero-shot tasks,
setting new benchmarks in LLM post-training pruning.

II. RELATED WORK

A. LLMs Pruning and Sparsity

Network pruning reduces deep neural networks by elim-
inating unnecessary weights, with methods categorized into
parameter-efficient fine-tuning (PEFT) and post-training ap-
proaches. PEFT begins with an initialized sparse network and
refines it through iterative processes [5]. LoRA [6] adapts
pre-trained models to specific tasks by injecting trainable
rank decomposition matrices. Dynamic Spase No Training
[7] prunes and grows weights to minimize reconstruction
error. However, fine-tuning often requires ample data and can
degrade performance. Post-training approach removes weights
from a pre-trained model. SparseGPT [4] uses Hessian-based
metrics and subsequent residual weight updates, Wanda [8]
introduces metric using weight-activation products.

B. Model Compression Strategy

Compression is key to reducing the memory and computa-
tional demands of model. Layer-aware strategies, originating
from Optimal Brain Damage [9] and Optimal Brain Surgeon
[10], have been enhanced by recent works like GPTQ [11] us-
ing second-order information. However, block-aware strategies
typically yield better accuracy recovery. For instance, APTQ
[12] applies global quantization to attention mechanisms,
BESA [13] uses block-wise sparsity allocation. Our method
leverages block-aware pruning to optimize global performance
across blocks, effectively balancing efficiency and accuracy.

III. LLM-BARBER

A. Preliminaries

LLM pruning removes weights from dense networks while
minimizing output discrepancies. However, this process is
computationally intensive for large-scale models, as it requires
addressing the layer-aware reconstruction problem [10]. This
section will reanalyzes the layer-aware reconstruction error
and the application of Taylor expansion at dense networks.

Layer-aware Reconstruction Error. For linear projection
layer weight W of shape (Cout, Cin), where Cout, Cin indicates
the output and input channels. With N calibration samples and
sequence length L, the input activation is denoted as X with
the shape of (Cin, N×L). Layer-aware reconstruction error E
is defined as the ℓ2 norm of output difference between dense
and sparse layers:

E = ||WX− ŴX||22, (1)

where Ŵ is the element-wise product of W and a binary
sparsity mask M(i, j) ∈ {0, 1} of shape (Cout, Cin), in context
with mask selection and without weight reconstruction:

E = ||WX− (W ⊙M)X||22. (2)

The goal is to find an optimal sparsity mask M that reduces
model complexity while preserving predictive accuracy.

Taylor Expansion at Dense Networks. For a dense net-
work Ŵdense at a local minimum, the reconstruction error E
can be expanded into its Taylor series with respect to sparsity
mask M, ignoring terms beyond second order:

E = Ed +
∂E

∂W
∆W +

1

2
∆WTH∆W. (3)

Without a sparsity mask in dense model, we can simply assign
all-one matrix to the mask M, thereby yielding the zeroth-
order terms Ed = 0. The first-order derivative ∂E/∂W
vanishes when training converged [4], [10], leaving only
the computationally expensive second-order terms involving
a large Hessian matrix which are challenging for layer-wise
reconstruction and channel-wise independence assumption.



TABLE I: WikiText-2 perplexity comparison at 50% sparsity rate. WR represents weight reconstruction.

LLaMA1 LLaMA2 LLaMA3 OPT

Method 7B 13B 7B 13B 8B 6.7B 13B

Dense 5.677 5.091 5.472 4.884 6.136 10.86 10.13

Magnitude 17.26 20.14 16.03 6.827 205.5 9.7e2 1.2e4
w/ LLM-Barber 7.332 6.089 7.170 5.955 10.98 13.12 15.52

SparseGPT 7.201 6.194 7.005 6.036 9.399 11.59 11.15
SparseGPT w/o WR 7.545 6.311 7.413 6.134 9.994 13.13 15.76

w/ LLM-Barber 7.159 6.125 7.004 5.929 9.348 11.95 11.93

Wanda 7.254 6.152 6.920 5.972 9.821 11.98 11.93
w/ LLM-Barber 7.118 6.091 6.868 5.918 9.451 11.95 11.71

Bold show improvements with LLM-Barber, underscored indicate best performance.

B. A One-Shot Block-Aware Rebuilder for Sparsity Mask
In this work, we depart from existing post-training pruning

methods in three key aspects: Firstly, we adopt a block-aware
reconstruction error and apply a divide-and-conquer strategy to
mitigate errors and computational costs. Secondly, we address
the limitations of mask selection of pruning in dense networks
due to the changeable significance of weights, by re-evaluating
weight importance score in sparse networks and rebuilding
the sparsity mask through targeted growth of salient weights
and pruning of non-salient weights. Thirdly, our analysis
reveals that with the advancement of LLMs, mask selection
becomes increasingly critical in weight reconstruction. Thus,
we prioritize the rebuilding of the sparsity mask and strip the
reconstruction of weights. Base on these insights, we propose
LLM-Barber, a Block-Aware Rebuilder for Sparsity Mask
in One-Shot without any fine-tuning or retraining.

Block-Aware Reconstruction Error. Building on the def-
initions in Eq. (1) and Eq. (2), we define the block-aware
reconstruction error for a Self-Attention or MLP block:

E = ||Block(W,X)− Block(W ⊙M,X)||22. (4)

Evaluating reconstruction error across blocks, denoted as
Block(·), allows us to achieve a globally optimal solution in
Self-Attention and MLP blocks rather than layer-wise.

Taylor Expansion at Sparse Networks. Migrating Eq. (3)
at sparse networks Ŵsparse with an initialization sparsity mask
Mi, we can obtain the Taylor series expansion as:

E = Es +
∂E

∂W
∆W +

1

2
∆WTH∆W. (5)

The zeroth-order term Es at sparse networks represents the
reconstruction error after mask initialization:

Es = ||Block(W,X)− Block(W ⊙Mi,X)||22. (6)

Assuming non-negligible zeroth-order terms, the first-order
gradient in sparse networks remains significant even after
convergence and can be efficiently accessed via PyTorch’s
Autograd. First-order information provides computational effi-
ciency and operates independently of any reconstruction error.
Therefore, second-order terms can be omitted when significant
gradients are present, leading to the following change in
reconstruction error due to mask rebuilding:

∆E = (∂E/∂W) ·∆W, (7)

which delineates the importance score of weights during
sparsity mask rebuilding.

Pruning Metric. For a Self-Attention or MLP Block
with weights W, first-order information suffices for block-
aware reconstruction error in sparse networks. The change in
weight magnitude during sparsity mask adjustment matches
the weight’s original magnitude (|∆Wij| = |Wij|). We thus
assess the impact of mask rebuilding on reconstruction error
by computing the product of the weight’s magnitude and its
gradient. The importance score for Wij is:

Sij = |Wij | · |(∂E/∂Wij)|, (8)

where |·| represents the absolute value operator, and E denotes
the block-aware reconstruction error. This metric prioritizes
weights with both magnitudes and significant gradients.

Pruning Granularity. Choosing the right pruning granular-
ity is crucial [8]. Traditional methods operate on a layer-wise
[14], input-wise [4], or output-wise [8] basis, which mainly
address the layer-aware reconstruction problem, known for
its output channel independence. Wanda’s output-wise ranking
yields superior results compared to other methods. However,
in LLM-Barber’s block-aware framework, output channel in-
dependence is no longer applicable. Thus, LLM-Barber ex-
tends consideration to block-wise granularity, prioritizing all
linear layers within a block. Our analysis of the four distinct
granularity levels shows that optimal granularity depends on
the specific sparse mask initialization, with detailed results
discussed in the Ablation Study IV-D.

Mask Rebuilding. With the block-aware reconstruction
error, gradient information, sparsity matrix, and granularity
established, we proceed to rebuild the sparsity mask for each
layer. Consider a cluster of weights Wc under a specific
sparsity granularity and its corresponding sparsity mask Mc

and pruning metric Sc. We define the growing criterion and
the pruning criterion:

gi, gj = argmax Sc, if Mc
gi,gj = 0, (9)

pi, pj = argmin Sc, if Mc
pi,pj = 1. (10)

The growing and pruning weights form a mask rebuilding
pair, representing the interchange within the sparsity mask.
The value of each pair is defined as the difference between
the importance scores of the growing and pruning weights.



Algorithm 1 Pseudocode of LLM-Barber.
Input: Calibration samples X, a block’s weights {Wl}Ll=1 and
initial masks {Mi

l}Ll=1, mask rebuilding ratio α.
Output: Rebuilt sparsity masks {Mr

l}Ll=1.
1: Ei ← Block(W,X)− Block(W ⊙Mi,X)
2: {Gl}Ll=1 ← BP for gradients via Ei.
3: for l in {1, 2, . . . , L} do
4: Mr

l ←Mi
l

5: Sl ← |Wl| · |Gl|
6: N ← Sl, α via Eq.(11)
7: for n in {1, 2, . . . , N} do
8: Obtain index gi, gj, pi, pj via Eq.(9) (10)
9: Mr

l
pi,pj = 1,Mr

l
gi,gj = 0

10: end for
11: end for
12: Er ← Block(W,X)− Block(W ⊙Mr,X)
13: Identify improvement by comparing Ei, Er.
14: return rebuilt sparsity masks {Mr

l}Ll=1.

Our experiments show that LLM-Barber identifies varying
proportions of salient weights based on the sparse mask’s ini-
tialization method. To regulate mask rebuilding, we introduce
a hyperparameter α, known as the mask rebuilding ratio. The
number of mask rebuilding pairs N is calculated as:

N = { i | Sgrow
i − Sprune

i > 0} · α, (11)

where Sgrow−Sprune represents the value of the mask rebuilding
pairs, where Sgrow is arranged in descending order, and Sprune

in ascending order. The subscript i denotes the number of
values that exceeds zero, indicating that the growing weight
is more important than the pruning weight.

C. Procedure

LLM-Barber is executed within a single global LLM for-
ward pass, with local backward passes for gradient compu-
tation in each block. Figure 2 illustrates the LLM-Barber
workflow, which consists of four stages:

(1) Sparsity Mask Initialization. Initialize a preliminary
sparsity mask from the dense network by a post-training
pruning technique. (2) Block-aware Reconstruction Error
Computation. We use a block-aware reconstruction error to
evaluate the discrepancy between the dense and sparse model
outputs. (3) Back-propagation for Gradients. Gradients are
automatically derived via back-propagation, and the product
of weights and gradients serves as the pruning metric. (4)
Sparsity Mask Rebuilding. Masks are sorted by pruning
metric, unpruned weights in ascending order while pruned
weights in descending order. We rebuild the weight masks by
growing newly significant weights and pruning those became
non-salient with a specific mask rebuilding ratio.

D. Structured N:M Sparsity

While LLM-Barber primarily targets unstructured sparsity,
it can be adapted for structured N:M sparsity. Groups of
M weights are pruned to retain only N non-zero weights.

During mask rebuilding, it divides each M-group into N
pairs (one pruned and one non-pruned weight), then sorts
them by output channel to identify mask rebuilding pairs.
This method optimizes sparsity mask, leveraging N:M sparsity
while maintaining model performance.

IV. EXPERIMENT

A. Experiment Settings

Setup. LLM-Barber is implemented in Pytorch and utilized
public model checkpoints from the HuggingFace library on
a single 80GB NVIDIA A100 GPU. After mask initilization,
LLM-Barber uniformly rebuilds sparsity masks in sequence,
performing in one-shot without any fine-tuning.

Models & Datasets. LLM-Barber is evaluated on the
LLaMA and OPT model family, including LLaMA-7B/13B
[15], LLaMA2-7B/13B [16], LLaMA3-8B [17] as well as
OPT-6.7B/13B [18]. Notably, LLM-Barber is broadly applica-
ble to any Transformer-based LLMs with Self-Attention and
MLP blocks. Following previous works, we use 128 segments
of 2048 tokens from the C4 dataset [19] for mask rebuilding.

Evaluation. To comprehensively assess LLM-Barber, we
conduct rigorous evaluations on perplexity and zero-shot per-
formance. Perplexity is measured on the validation sets of
benchmarks such as WikiText-2 [20], PTB [21], and C4 [19].
Zero-shot performance is assessed using EleutherAI LM Har-
ness [22] across six tasks: BoolQ [23], RTE [24], HellaSwag
[25], ARC Easy and Challenge [26], and OpenbookQA [27].

Baselines. The results of LLM-Barber are compared with
the following established post-training pruning methods: (1)
Magnitude Pruning [14] eliminates weights based only on their
magnitudes; (2) SparseGPT [4] identifies weights importance
by using second-order information; (3) Wanda [8] determines
weights to be pruned by the weight multiplied by activation.

B. Main Results

Unstructured Sparsity. LLM-Barber effectively prunes the
LLaMA and OPT models, achieving 50% unstructured sparsity
without requiring supplementary weight reconstruction, as
detailed in Table I. LLM-Barber demonstrates the capability to
rebuild the sparsity masks initialized by other pruning methods
in a single forward pass, significantly outperforming conven-
tional pruning baselines. In the LLaMA3-8B model, LLM-
Barber creates a new sparsity mask that reduces perplexity
to 9.451, a substantial improvement over the Wanda baseline
of 9.821. Notably, LLM-Barber achieves robust improvements
even with poorly performing initial sparsity masks, such as
magnitude pruning, where it reduces perplexity from 205.5 to
10.98, which is an impressive and substantial enhancement.

Zero-shot Performance. Following previous works [4], [8],
we evaluated the LLaMA models on six diverse zero-shot
tasks. The results are summarized in Table II, where models
are pruned to unstructured 50% sparsity. Averaging the accu-
racy across the six evaluated tasks, it becomes apparent that
LLM-Barber possesses the capability to identify a more effec-
tive network than those obtained via the initialization methods.



TABLE II: Zero-shot performance comparison of LLaMA series on six tasks at 50% sparsity rate.

Model Method BoolQ RTE HellaSwag ARC-e ARC-c OBQA Mean

LLaMA-7B

Dense 75.08 66.79 56.96 75.29 41.89 34.40 58.40

Magnitude 54.61 54.51 45.47 58.75 33.45 22.60 44.89
w/ LLM-Barber 71.47 59.93 50.63 69.11 35.41 28.20 52.46

Wanda 70.98 55.23 51.90 69.44 36.86 28.60 52.17
w/LLM-Barber 73.12 56.68 51.80 70.32 36.95 28.80 52.95

LLaMA2-13B

Dense 80.58 65.34 60.05 79.38 48.46 35.20 61.50

Magnitude 70.53 55.96 54.42 57.68 38.40 27.80 50.79
w/ LLM-Barber 81.10 60.29 55.67 75.34 40.28 31.20 57.31

Wanda 80.95 60.28 56.98 76.30 42.26 31.20 57.99
w/ LLM-Barber 80.98 62.82 55.99 76.39 42.13 31.40 58.29

LLaMA3-8B

Dense 81.35 69.68 60.19 80.09 50.60 34.80 62.79

Magnitude 42.87 53.07 29.85 46.59 25.09 22.00 36.57
w/ LLM-Barber 72.72 54.87 51.00 72.05 37.46 27.40 52.58

Wanda 78.41 60.29 51.20 71.38 40.10 29.40 55.13
w/LLM-Barber 78.59 61.37 51.01 71.46 39.85 29.00 55.21

Bold show improvements with LLM-Barber, underscored indicate best performance.

For tasks such as BoolQ, RTE, and ARC-e, LLM-Barber con-
sistently outperforms the baseline pruning techniques across
the entire LLaMA model suite. However, it is worth noting
that there is no single universally superior performer for the
remaining tasks in the evaluation set, with the initial pruning
methods sometimes matching or even marginally exceeding
the results obtained through LLM-Barber.

TABLE III: WikiText-2 perplexity performance for pruning
LLaMA3-8B at varying sparsity rate.

Sparsity 60% 70% 80% 90%

Magnitude 3.39e4 1.62e6 8.55e7 2.26e7
w/ LLM-Barber 28.14 2.08e2 1.09e3 7.55e4

Wanda 23.57 1.28e2 8.54e2 1.28e4
w/ LLM-Barber 22.04 1.07e2 5.70e2 7.07e3

Varying Sparsity Levels. We conduct experiments on
varying sparsity levels for unstructured pruning in LLaMA3-
8B as shown in Table III. LLM-Barber consistently increases
perplexity across all initialization methods, with magnitude
pruning showing the most significant improvement.

TABLE IV: WikiText-2 perplexity comparison for pruning
LLaMA family with structured N:M pattern.

Method Sparsity V1-7B V1-13B V2-7B

Magnitude 4:8 16.83 13.72 15.91
w/ LLM-Barber 4:8 8.852 7.137 9.345

SparseGPT 4:8 8.608 7.437 8.495
w/ LLM-Barber 4:8 8.191 7.085 8.003

Magnitude 2:4 42.56 18.32 37.76
w/ LLM-Barber 2:4 11.04 9.006 13.47

SparseGPT 2:4 11.55 9.116 10.94
w/ LLM-Barber 2:4 10.14 8.517 9.806

Structured N:M Sparsity. In contrast to unstructured
sparsity, employing N:M fine-grained sparsity can provide
more tangible acceleration benefits when leveraging NVIDIA
Ampere’s sparse tensor cores [28]. Therefore, we also evaluate

the effectiveness of our LLM-Barber in partial LLaMA models
on the N:M fine-grained sparsity pattern as shown in Table IV.

C. Mask Rebuilding Ratio Selection

A critical aspect of the LLM-Barber method lies in deter-
mining the optimal mask rebuilding ratio for peak accuracy.
This is effectively achieved by analyzing the distribution
of value magnitudes within mask rebuilding pairs, reflecting
differences between growing and pruning importance scores.
Notably, this distribution often exhibits distinct outliers, en-
abling rapid identification of suitable mask rebuilding ratios.

We plotted the score distribution of mask rebuilding pairs
across various pruning granularities and initialization methods
on LLaMA-7B, along with perplexity performance at various
rebuilding ratios (Figure 3). The results reveal a strong corre-
lation between the distribution of outliers in mask rebuilding
pairs and the optimal mask rebuilding ratio. For instance,
outliers are significantly distributed within the top 10% with
Magnitude pruning, thus selecting a 10% mask rebuilding ratio
yields the overall optimal solution. Similarly, the Wanda ini-
tialization method shows a notable outlier distribution around
the 1% mark corresponds to optimal results near a 1% mask
rebuilding ratio. Thus, LLM-Barber can preemptively narrow
the search range for the optimal mask rebuilding ratio by
analyzing outlier distributions, allowing for flexible adaptation
to various reconstruction masks without extensive searching.

D. Ablation Study

Given the significant potential of LLM-Barber, we analyzed
three critical factors to assess the robustness and effective-
ness of our method: pruning granularity, pruning metric, and
calibration data size. These factors were chosen to gain a
deeper understanding of how different configurations affect
the performance of pruned models and to demonstrate LLM-
Barber’s versatility across various settings.

Pruning Granularity. LLM-Barber dynamically selects
different pruning granularities to adapt to varying initial-
ization methods. In this paper, we evaluated the impact of
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Fig. 3: The importance score distribution of mask rebuilding pairs and WikiText-2 perplexity results at varying pruning
granularities in LLaMA-7B, with the green dashed line marking the optimal mask rebuilding ratio.

four levels of granularities: block-wise, layer-wise, input-
wise, and output-wise pruning, as shown in Table V. For
magnitude pruning, the block-wise granularity yields the best
performance, while the output-wise granularity delivers the
lowest perplexity for Wanda pruning. By tailoring the pruning
granularity to the particular pruning approach, LLM-Barber
can consistently achieve optimal model performance.

TABLE V: Pruning granularity ablation in LLaMA3-8B.

Method Pruning Granularity
w/ LLM-Barber Block Layer Input Output

Magnitude 10.98 11.06 72.48 11.81
SparseGPT 9.380 9.348 9.418 9.567

Wanda 9.626 9.633 9.849 9.451
Bold results show best granularity of each row.

Pruning Metric. We analyze the effect of different pruning
metrics, weight magnitude, gradient magnitude, and product
of weight and gradient. As shown in Table VI, the product
of weight and gradient consistently outperforms the others,
achieving the lowest perplexity of 10.98 for Magnitude, 9.348
for SparseGPT, and 9.451 for Wanda. This confirms the effec-
tiveness of our product-based pruning metric across various
methods.

TABLE VI: Ablation of pruning metric in LLaMA3-8B.

Method Pruning Metric
w/ LLM-Barber |W| |∂E/∂W| |W||∂E/∂W|

Magnitude 186.5 14.43 10.98
SparseGPT 9.544 9.457 9.348

Wanda 9.880 9.699 9.451
Bold results support the pruning metric |W||∂E/∂W|.

Calibration Data Size. We explore how varying the size
of calibration data influences the performance of LLM-Barber.
Figure 4 demonstrates that as the calibration sample size in-
creases, LLM-Barber maintains robust performance. Notably,
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Fig. 4: Ablation of calibration size in LLaMA3-8B. LLM-
Barber is robust across varying calibration size.

with more than four samples, our method achieves better per-
plexity than SparseGPT and Wanda. LLM-Barber outperforms
SparseGPT even with just a single sample, underscoring its
robustness across different sample sizes.

V. CONCLUSION

We propose LLM-Barber (A One-Shot Block-Aware Re-
builder for Sparsity Mask), a novel framework that rebuilds
sparsity mask to optimize LLM post-training pruning. By
integrating a block-aware approach across Self-Attention and
MLP blocks, LLM-Barber effectively reallocates sparsity to
improve accuracy without the need for extensive fine-tuning.
Specifically, LLM-Barber identifies novel importance score
after mask initialization and rebuilds the sparsity mask with
mask rebuilding pairs, simultaneously applying new sparsity
masks to weights that have become less critical, thereby opti-
mizing overall model performance. By being the first to utlize
the product of weights and gradients as a pruning metric within
LLM post-training pruning, our approach enables precise and
efficient reallocation of sparsity mask. Extensive experiments
on pruning LLaMA series models demonstrate that LLM-
Barber achieves state-of-the-art results in both perplexity and
zero-shot performance in the domain of post-training pruning.
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